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The problem of the reinforcement of plane structures with uniformly stressed fibres of constant cross-section taking the thermal 
effects into account is formulated. The properties of the solution of this problem, which are determined by the heat conduction 
equation and the condition of constancy of the cross-sections of the fibres, are investigated. The effect of the temperature field 
on the structure of the reinforcement is analysed. O 1997 Elsevier Science Ltd. All rights reserved. 

A formulation of the problem of the rational reinforcement (RR) of plane composite structures with 
two families of high-modulus uniformly stressed fibres of constant cross-section taking thermal effects 
into account has been given previously in [ 1]. The corresponding system of equations possesses a number 
of singularities whiieh make the properties of its solutions difficult to investigate in the general ease. 
Some properties of the solutions of RR problems which have been formulated with less-restrictive 
constraints than in [1] and take account of the temperature field are investigated below. 

1. I N I T I A L  E Q U A T I O N S  

The complete system of equations which describes the behaviour of plane structures, which are loaded 
and reinforced by N families of fibres in the plane of the structure, has the form (the materials of the 
matrix and the fibres are assumed to be isotropic and their behaviour is assumed to be linearly elastic) 

the equilibrium equations and the differential Cauehy relations 

01i,1 + 0 i 2 , 2  -- - b  i, i = 1,2 (1.1) 

e q = ~ ( u i ,  j +u j , i ) /2 ,  i , j = l , 2  (1.2) 

the Dulaamel-Neumarm relations [2] 

Oij = aO~ + ~ OtCOfltil,j, i , j  = 1,2 (1.3) 
k 

Oi c = Eal (eii+ ve.jj - ct c (1 + v)O), O~ = Ea2eij 

j = 3 - i ,  i=1,2;  a l = l / ( l - v 2 ) ,  a 2 = l / ( l + v  ) 

lkl=cosCt,,  lk2=sinctk, a = l - ~ ,  f2=~.  t9 k 
k 

the condition for uniform tensioning of the fibres 

O k = E , e  k = const, k = 1,2 ..... N (1.4) 

g k = £11/21 + E22/22 + 2g12/k2 --O~akO 

and the condition for the cross-sections of the fibres to be constant [1] 

((0k/kl),l + (fOt/k2)12 = 0, k = I, 2 ..... N (1.5) 
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The existence of thermal action not only has an effect on the structure of the rational reinforcement 
but the temperature field itself in the structure depends very much on the RR parameters, which 
leads to the related problems of determining the structure of the reinforcement and the temperature 
field. In solving such a complex problem as the rational reinforcement of structures with uniformly 
tensioned fibres, it is natural to consider those models of heat conduction which describe the basic 
thermal properties of a composition and, at the same time, have the simplest form for the subsequent 
analysis. 

In the case of a unidirectionally reinforced material, the integral longitudinal thermal conductivity 
is well described to a first approximation by the law for a simple mixture and the determination of the 
integral transverse thermal conductivities requires the inclusion of a special mathematical apparatus 
[3]. On the basis of hypotheses, similar to those used in [4] when deriving the components of the 
compliance tensor of a unidirectionally reinforced elastic material, we obtain that a quantity, which 
is the inverse of the integral transverse thermal conductivity, is determined using the rule for mixtures 
of quantities which are the inverses of the thermal conductivities of the fibre and the binder. (The 
averaged thermal conductivities formed in this way are coefficients of positive definite quadratic 
form.) In the case of a composite material reinforced with N families of fibres in parallel planes, 
we determine the integral thermal conductivities by averaging (proportional to the functions tOk) the 
thermal conductivities of the unidirectionaliy reinforced layers. The thermal conductivities of the whole 
packet (A#) averaged in this way will be coefficients of positive definite quadratic form if the physical 
constraints 

0<6% (k= l ,2  ..... N), ~ < 1  (1.6) 

are satisfied and the plane steady-state heat conduction equation takes the form 

(All01 +AI20,2), I+(A2101+A220,2), 2 = - w  (1.7) 

Ai j = ~-~-1 ~ (Ok {[~~(~k -- ~c ) "t" ~'c ]lkilkj + (-1) i+j lktlkn,~'k~'c [~(~'c -- ~'k ) + ~'t ]-I }, 
k 

1 = 3 - i ,  m = 3 - j ,  i , j = l , 2  

The following notation is used in Eqs (1.1)-(1.7): o#and ~7 are the components of the averaged stresses 
and strains, ~ .  are the components of the stresses in the binder, Ok and ek are the stress and the mechan- 
ical deformation in the reinforcing of the kth family, C0k IS the mtenslty of the reinforcement by a fibre 
of the kth family, ak is the angle between the tangent to the trajectory of a fibre of the kth family and 
the xl axis, a is the intensity of the reinforcement by layers of the binder (with certain additional 
assumptions, it can be taken that a = const, as was done in [1], for example); E and Ek are Young's 
moduli for the materials of the matrix and the reinforcement of the kth family, v is Poisson's ratio of 
the binder, ui and bi are the components of the displacement and the mass distribution of the load along 
the directions xi of a rectangular Cartesian system of coordinates, where bi = ( a p c  + Y~k OOkfk) Fi 
(i = 1, 2), Pc and Pk are the mass densities of the materials of the binder and the fibres of the kth family, 
Fi are the components of the specific load distribution which acts per unit mass, ac and a ~  are the 
coefficients of linear thermal expansion of the binder and the reinforcement of the kth family, ~ and 

are the thermal conductivities of the matrix and the reinforcement of the kth family, 0 is the deviation 
of the actual temperature of the structure from the temperature in its natural state, and w is the intensity 
of the internal heat sources; here and henceforth summation is carried out with respect to an indicated 
index from 1 to N if no limits are specified and a subscript after a comma denotes differentiation with 
respect to the corresponding coordinate xi. 

The static boundary conditions 

olin 2 + 022n22 + 2012nln 2 = p.(s)  

(022 - oil )n~n 2 + 012 (n~ - n 2) = px(S) 
(1.8) 

can be specified on one part of the contour of the structure (Fp) and the kinematic conditions 

ui(F.)=Uio(S), i=1,2 (1.9) 
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can be specified on another part (F,,). The thermal boundary conditions 

~(10[(All0.1 + Al20  2 )n  1 + (A210,1 + A220 2 )n  2 +q0]+ Zl (0-00)  = 0 (1.10) 

can be specified over the whole of the contour r .  (Each of the conditions (1.8) and (1.9) can also be 
specified over the whole of the contour F which bounds the domain G which is occupied by the structure 
in a plan view.) Here, nl = cos 15, n2 = sin I~ where I~ is the angle specifying the direction of the outward 
normal to F, pn andp~ are the normal and shear stress in the contour, respectively, u~ is the displacement 
in the contour, qo(s) is the heat flux across the surface which bounds the structure, 00(s) is the difference 
between the temperature of the surroundings on the contour and the temperature of the structure in 
a natural state, Z0 aJad ~1 are switching functions which enable one to select any type of thermal boundary 
conditions and s is a parameter which defines the contour. 

Since Eqs (1.5) are consequences of the integral laws of conservation of the cross-sections of the fibres 
[1], the functions ta~ can only be specified on that part of the contour (F.) in which fibres occur in the 
structure. It is therefore necessary to choose the boundary conditions 

tak(Fto) =ta,k(S), k = 1,2 ..... N (1.11) 

in Fo (not to be confused with the initial conditions in unsteady-state problems in mechanics). 

2. THE SYSTEM OF RESOLVENTS 

In order to reduce system (1.1)-(1.5), (1.7) and boundary conditions (1.8) to a resolvent form, it is 
necessary to substitute relation (1.2) into (1.3) and (1.4) and to substitute the result of this into (1.1) 
and (1.8), after which a dosed system of equations and boundary conditions is obtained which contains 
the displacements ui, the reinforcement parameters tag, a k and the temperature 0 as the unknowns 

( _  ])t :~ (~ktaklkja~k (O~k ) + g{aa I [Ui,ii + VUj,ij + i~ 2 (1 -- V)(uj, i j  + Ui,jj )] -- 
k 

-aacO i ( l  "- V) -I  -- ~. {a I [U i i + VUj j -- O{ c (1 + V)0]O) k i + 1~2 a2 (ui,j + Uj,i)O)k,j } t  = -bi 
' k ' " " 

j = 3 - i ,  i=  1, 2 (2.1) 

3,k (Or k) + tak~k (a k) = 0, k = 1, 2 ..... N (2.2) 

Os, (u~) cos a k + ask (u 2 ) sin 0{ 2 - -  ~ak 0 = E k = const (2.3) 

( A l l 0  i + A120 .2)  I + ( A 2 1 0  1 + A220 2). 2 = -w.  (2.4) 

where 3sk and On, are operators of differentiation along directions which are tangential and normal to 
the trajectory of the reinforcement of the kth family 

a,k( f )  = f.ll,1 + f,21k2, a .k( f )  = - f : Ik2 + f,21k, (2.5) 

and f  is an arbitrary differentiable function. 
Boundary conditions (1.8) take the form ((xl, x2) e rp) 

E Ck~k cos 2 (0~k - 13) + Eaal[n 2 (u,., + vu2.2) + n~ (vu, a + u2.2) + 
k 

+(1 -v)(ul, 2 + u2. I )nln2 - acOa21 ] = P, (s) (2.6) 

olta, sin 2(a k - 13) + Eaa2 [2nln2 (u2.2 - u H ) + (n 2 -nEE )(ui.2 +u2.1 )] = 2p~ (s) 
k 

The remaining conditions (1.9)-(1.11) remain unchanged. 
The system of resolvents (2.1)-(2.4) and the boundary conditions (1.10), (2.6) show that problems 

of determining the stress-strain state of a structure, the temperature field and the RR parameters are 
connected and they have to be solved together. 

We will use the determinant method in [5] to determine the type of system (2.1)-(2.4). Since Eqs (2.3) 
do not contain higher derivatives of the unknown functions, the characteristic determinant of this system 
is identically zero. Hence, in order to clarify its type, we need to differentiate each equation of (2.3) by 
applying the operators a~, for example. The characteristic equation of the transformed system has the form 
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(A 1 lX~ 2 _ 2Ai2x~ + A22 ){1~ E2a2ala2 (1 + x~ 2 )2 + i/2 Eaala21~k Sk~31.1k _ 

--~'i j>i y" SiSj~2~sin2(O~i--O~J)+n=J.2 ~ ((~c2 --~nX2)[ / ~' tofflj(ljm[-l/2Eaala21x2 + 

+ l,n 221I m=3 n l ;~ksk - Eaajxn +(-l)nE l k l l k ~ s ~  ~ 
k k (2.7) 

Here 

~k =lk2--lklX~, lll~ =lki +lk2x~, XI=I+~( I - -v )x~  2 

x2 =~(1-V)+X22,  sk =t~ktokAkl, Ak =lk2Osk(Ul)- lklOs*(U2) (k = 1,2 ..... N) 

and the derivative x~(xl) = dx2/dxl specifies the direction of the characteristic. The factors occurring 
in (2.7) after the braces indicate that the transformed system of resolvents has N real characteristics 
which coincide with the trajectories of the reinforcement. The trinomial in expression (2.7) in front of 
the braces only has complex roots x~. 

Actually, it has been pointed out in Section 1 that, when the constraints (1.6) are satisfied, the coefficients A# 
accompanying the arbitrary reinforcement parameters are coefficients of a positive definite quadratic form and 
this means that the inequality 

D= (-2A12) 2 -4AliA22 <0 (2.8) 

is satisfied by them. 
By virtue of this, the trinomial in (2.7) only has complex roots. 

Consequently, the system of resolvents, when account is taken of thermal effects, has two complex 
characteristic directions. The expression enclosed in the braces in (2.7) is a fourth-order algebraic 
polynomial in x~ which, depending on the values of the unknown functions and their derivatives, can 
have a different number of real roots and the system of resolvents (2.1)-(2.4) is therefore a quasilinear 
system of mixed-composite type [6]. 

3. SOME P R O P E R T I E S  OF THE S O L U T I O N  OF SYSTEM (2 .1 ) - (2 .4 )  

At the present time, the theory of mixed-composite equations is still very incompletely developed 
[6] as regards the possibility of investigating the properties of the solution of system (2.1)-(2.4) analy- 
tically in general form. However, certain properties of the solution of this problem can be noted. 

A negative value of the discriminant D means that Eq. (2.4) for 0, written in a divergent form for 
arbitrary reinforcement parameters ok, tot, (1 ~< k ~< N), taking account of the constraints (1.6), satisfies 
the conditions of ellipticity [5]. This means that, when there are no internal heat sources (w = 0), a 
function of the temperature O can only attain its maximum and minimum values on the contour F. In 
particular, it follows from this that, when w = 0 and when a constant value 00( x = 0, Xl = 1) or a zero 
heat flux q0 = (X0 = 1, Xl = 0) is specified in boundary conditions (1.10) over the whole of the contour 
F, the function O will also be constant over the whole of the structure and equal to O0. Consequently, 
the heat conduction problem may be considered to be solved, regardless of the solution of the R R  
problem although, as before, the structure of the rational reinforcement will depend very much on the 
level of heating or cooling of the structure. 

We will now investigate some properties of functions of the intensity of the reinforcement t~, which 
satisfy the conditions for the cross-sections of the fibres to be constant (2.2). We assume that the fibres 
are stacked in the structure in some manner, that is, the trajectories of the reinforcement are known. 
Then, integrating (2.2) along the trajectories of the reinforcement, starting from the contour F~, on 
which initial conditions (1.11) are specified, we obtain 
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t 0 ,=c0 i ,  ,exp - 3nk(O~,)dl k , k = l , 2  . . . . .  N (3.1) 

where lk is the variable length of an arc along a chosen reinforcement trajectory of the kth family. It 
follows from equality (3.1) that the sign of the function ok is completely determined by the sign of the 
initial value of cot,. ttence, if the functions cot, are specified such that they satisfy the first N in equalities 
(1.6), these inequalities will hold for ¢0t, at all points of the structure. Moreover, if cot  ̀= 0, the function 
ok will be equal to zero along the whole of the formal reinforcement trajectory. Consequently, when 
solving the rational reinforcement problem, it is only necessary to check that the last inequality of (1.6) 
is satisfied (violation of this inequality physically denotes "buckling" of the fibres from the reinforce- 
ment plane). 

It turns out that the family of trajectories of fibres of constant cross-section cannot have an envelope. 

To prove this, we use the following form of the condition for the cross-sections of the fibres to be constant 
[1] 

o~nLdl=O, k = i , 2  ..... N (3.2) 
L 

where ok is a vector with components 0~a = ok/ta (i ffi 1, 2) and nL is the unit vector of an outward normal to the 
contour L which bounds an arbitrary simply connected domain V C G. 

The proof is by contradiction. Suppose that the kth family of fibres fits a certain curve S. Consequently, each 
trajectory touches the curve S at a certain point (see Fig. 1). From this family, we pick out two trajectories/'1 and 
T2 which have points of contact $1 and $2 with S. On the trajectory/'2, we specify a pointA2 which differs from $2 
and, from it, we draw a curve S* such that the tangents to it are perpendicular to the family of reinforcement 
trajectories. The point of intersection of the curve S* with the trajectory 7"1 is denoted byA 1 ( all of these conditions 
can be satisfied if one selects two close contours 7"1 and 7"2). Condition (3.2) holds in the case of a piecewise-smooth 
contour L = A1S1S~I.zA1, and we rewrite this condition in the form 

to/,cos(ctk-~)d/= ~ t0jtcos(otk-~)dl+ ~ 0~kcos(0tk-$)dl=0 (3.3) 
L SIS 2 A2A I 

where 5 is an angle defining the direction of the vector nL, and the integrals along the eurvilinear segmentsA1S1 
and Szd2 are equal to zero since the vectors are orthogonal to them. By virtue of the construction of the curve S* 
in the segmentAzA1 C S*, 0~k-- 8 = ~ and, hence, when the condition ok > 0 is satisfied in this segment, (3.3) can 
be rewritten in the form 

co k cos(0 t , -$)d l=  f oo,dl=c>O (3.4) 
SIS2 A2AI 

However, since the curve S* is the envelope of the kth family of fibres, the inequality eos(0~ - 8) = 0 holds in the 
eurvilinear segment $2S1 C S. Consequently, in order that the integral on the left-hand side of (3.4) should be 
positive, an unbounded increase in the function ok as it approaches the curve S is required, and this means that 
the last condition of (1.6) will be violated dose to the envelope of the family of reinforcement trajectories. The 
resulting contradiction therefore shows that the family of fibres of constant cross-section cannot have an envelope 
and, in particular, that the reinforcement trajectories of such fibres cannot approach along tangential directions 
to the contour of the structure. 

/s* Is 

Fig. 1. 
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Now, suppose that the domain G occupied by the reinforced structure is doubly connected and 
bounded by an external contour 1"1 and an internal contour F2. We assume that fibres of the kth 
family enter the domain G in a certain eurvilinear segment A1A 2 C F 1 which is bounded by the 
pointSAl andA2 and that these same fibres leave domain G in a eurvilinear segment $1S2 C F 2 which 
is bounded by the points SÂ and $2. Moreover, the pointsA1 and $1 belong to the same reinforcement 
trajectory, and the points A2 and $2 to another trajectory. In this ease, equality (3.3) will hold again. 
We now start to contract the internal contour F 2 to a certain point when the length of the eurvilinear 
segment $1S2 (together with the length of the contour I"2) will tend to zero. Since the integral along 
the segmentA~ll in (3.3) remains constant and is now zero, and the length of the segment $1S2 tends 
to zero, the function ¢0 k in this segment must increase without limit as the contour F2 is contracted to 
a point, which violates the last condition of inequality (1.6). Consequently, if in the case of a doubly 
connected structure fibres of constant cross-section enter the structure on one contour and leave from 
the other, it is then impossible to obtain a reinforced simply connected structure by contracting the 
internal contour to a point. 

In many RR problems in doubly connected structures such conditions for the stacking of the fibres 
are, in fact, satisfied. Hence, in the case of a doubly connected structure, which the fibres enter along 
the whole contour that bounds it, it is necessary to introduce a closed line of discontinuity of the solution 
through which the fibres would leave the reinforced subdomain, and within the domain which is bounded 
by this line of discontinuity in the solution, the structure of the material must be known (it is made of 
an isotropic material, for example). Such problems may be called rational reinforcement problems with 
a reinforcement where the mechanical characteristics are known. 

The mathematical apparatus which has been presented above can be used to prove the following 
fact: fibres of constant cross-section belonging to one and the same family cannot intersect and cannot 
asymptotically approach one and the same curve, since, in this case, the last inequality of (1.6) will be 
violated. 

The results obtained above, based on the condition for the cross-sections of the fibres to be constant, 
remain valid for any plane structures and plates which are reinforced with such fibres and not just for 
plane composite structures with rational stacking of the reinforcement. 

We now consider the issue of the non-uniqueness of the solution of the RR problem. Actually, the 
static, kinematic and thermal boundary conditions (1.9), (1.10) and (2.6) are natural in problems of 
the mechanics of a deformable solid and are defined by the actual conditions under which the structure 
is used. The initial conditions for the reinforcement intensities (1.11) are "technological" conditions 
that specify the quantity of fibres of the kth family which are embedded in the structure in a given segment 
of the contour. The choice of the amount of embedded fibres is arbitrary to a certain extent. It only 
satisfies the constraints (1.6) and the conditions for the existence of the corresponding RR design. 
Consequently, an RR problem possesses functional arbitrariness associated with initial conditions (1.11) 
and the greater the number of families of fibres, the greater the number of these arbitrary factors. By 
varying initial conditions (1.11), it is possible to obtain whole "pencils" of solutions of an RR problem 
from which designs with certain properties can be selected such as, for example, with the minimum 
usage of reinforcing fibres, with the least intensity of stresses in the matrix, the least compliance, or 
those which area the most convenient from the point of view of their technological implementation. 
This means that it is possible to control rational designs. Furthermore, by virtue of the substantial non- 
linearity of the static and thermal boundary conditions in the functions ak, 0~k an RR problem can have 
several solutions even in the case of fixed boundary conditions (1.11). All of this extends the "spectrum" 
of solutions of an RR problem even more, and the most practically achievable designs can be selected 
from this spectrum. 

4. ANALYSIS OF SOME SOLUTIONS OF AN RR P R O B L E M  

In plane structures, the supporting elements are subject to comparable stress in areas which are 
differently orientated along the two directions and, from a practical point of view, it is quite satisfactory 
in plane RR problems to embed two families of uniformly stressed fibres in a structure. For this reason, 
we shall take N = 2 in the examples which are presented below. 

We will initially consider the RR problem of an annular plate which is bounded by circles of 
radius r0, rl: r 0 = 0.Sr 1. The internal contour is not under any load: Pn = P~ = 0 while a uniform normal 
load: Pn = 0.08al,p~ = 0 is applied to the external contour. The distributed mass loads and thermal 
action are not taken into account: bl = b2 = 0 = 0. The mechanical properties of the matrix and fibre 
materials are defined by the inequalities: 61 = o2 > 0, E1 = E2, ~1 = ~2, o~al = Oh2, E ffi 0.01El, ~lf/~ 
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= oh1/o~ = 1.5, v = 0.25, that is, the fibres are made from a single material. We choose the initial 
conditions for the :intensity of the reinforcement in the external contour as: ¢tM (rl) = con2 (rl) = 0.05. 
A rational reinforcement design was obtained for these axially symmetric input data, and the reinforce- 
ment trajectories corresponding to it and a graph of the intensity of the stresses in the matrix (ou(r)) 
are shown in Figs 2 and 3. 

This problem is of special interest for the following reasons. The internal contour is free from any 
load and the averaged stresses onn normal to it will therefore be zero, while the stresses in the phases 
of the composition constituting o~,, are non-zero in this ease. Actually, it can be seen from Fig. 2 that 
the reinforcement trajectories of the uniformly stressed fibres approach the internal contour along lines 
which are dose to tangents (they cannot be tangents as was shown in Section 3). The closeness of the 
trajectories to tangents substantially reduces the contribution of the stresses in the fibres to the averaged 
stresses On,,, but, by virtue of the fact that these trajectories differ somewhat from tangents, this 
contribution is not equal to zero and hence, when r = r0, it must be compensated by stresses in the 
matrix. On the other hand, as was shown in Section 3, the closeness of the reinforcement trajectories 
to lines which are tangents to the internal contour leads to a sharp increase in the functions ¢01, o)2 
when r -o r0 + 0, and this implies a sharp decrease in the intensity of the intedaying of the binder a = 
(1 - c01 - o>2) when r ---> r0 + 0. The small value of the ratio E/E1 and the pronounced decrease in a 
leads to a state of affairs where the deformations dose to the internal contour must reach values with 
large moduli in order to compensate in on,, for the contribution from the stresses in the fibres. T his 
fact is dearly reflected in the graph of the function ou(r) (Fig. 3): the intensity of the stresses in the 

Fig. 2. 

0.1 

0.05 

0 
0.5 

f 

O.6 0.7 a8 

Fig. 3. 
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matrix increases rapidly when r ~ r0 + O, exceeding the values of au(r) at points of the structure which 
are distant from the internal contour by an order of magnitude. (For comparison, it is pertinent to point 
out here that, in the case of an isotropie plate with the same dimensions and the same load, the ratio 
of the intensities of the stresses in the internal contour to the same quantity in the external contour is 
equal to a,.(ro)/a,(rl) = 1.84.) 

If an asymptotic analysis is carded out on system (2.1)-(2.6), taking the ratio E/E1 as a small parameter, 
then, when there are no dism'buted mass loads, the first approximations for the reinforcement trajectories 
will be straight lines. The reinforcement trajectories shown in Fig. 2 are in accordance with this conclusion 
since they are close to straight lines in almost the whole of the structure. Pronounced curvature in them 
is only observed in the neighbourhood of the internal contour which is clearly attributable to the large 
deformations in this neighbourhood. 

The example presented above clearly reflects the fact that the requirement that the conditions for 
the uniform stressing of the high-modulus fibres throughout the whole of a structure with a specified 
level of stresses must be satisfied is very rigorons. This requirement, on the one hand, cannot be achieved 
in a number of structures even from a mathematical point of view and, on the other hand, can lead to 
RR projects in which the binder will be fractured. Consequently, in order to moderate conditions for 
rational planning, it is advisable to consider RR problems with discontinuous solutions when the fibres 
in different subdomains of a structure are made of different materials, or to introduce reinforcements 
where the structure of the reinforcement material is already known. For instance, in the above example, 
one should introduce an annular reinforcement made of an isotropic material, for example, in the internal 
contour .  

We will now demonstrate the effect of a temperature field on the structure of a rational reinforcement 
using the following example. A plane structure is bounded by two contours which are specified by 
equalities in a polar system of coordinates. The internal contour r0((p) = D(O.5 - 0.05 cos(2(p - rd2)) 
and the external contour r((p) = D(1 + 0.08 cos 2q~), where D is the characteristic dimension of the 
structure. The structure is clamped along the external contour and a uniform normal load is applied 
to the internal contour: p~ = 0.5Ol, px = 0. Distributed mass loads are ignored: bl = b2 = 0. The 
mechanical properties of the binder and fibre materials are the same as in the preceding example. 
We choose the initial conditions for the reinforcement intensities in the internal contour as: a~l(~) = 
O~2((p) ---- 0.4. 

An RR design without allowing for thermal action was obtained for these input data. The structure 
of the reinforcement, corresponding to it, is shown in Fig. 4 by the dashed lines, and the reinforcement 
trajectories do not differ visually from straight lines. 

Suppose that there is a heat flux across the end surfaces of the structure, that the intensity of the 
internal thermal sources is equal to zero and that a dimensionless value of the temperature ElOtc00/o 1 
- 6 is specified at a certain point of the contour. According to the results in Section 3, for such thermal 
action, the temperature field will be constant and equal to 00. Consequently, the heat conduction problem 
in this example can be considered to have been solved independently of the solution of the R R  problem. 

i 
Fig. 4. 
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The structure of the rational reinforcement corresponding to such uniform heating is represented by 
the solid lines in Fiig. 4. A comparison of the RR designs presented in Fig. 4 shows that the heating of 
a structure leads to a concentration of the reinforcement trajectories and to the appearance of their 
clearly defined curTature. Moreover, a thermal action has a substantial effect on the stress-strain state 
of a structure. Thus, the greatest value of the stress intensity in the binder in a heated structure is 11.8 
times greater than in a temperature-free design. 

Calculations shewed that similar reinforcement designs can correspond to different types of heating 
of the structure. If the coefficients of linear thermal expansion of the fibres are greater than the 
corresponding coefficient for the binder, then the RR trajectories become concentrated when the sign 
of the temperature is identical to the sign of the stress in fibres of equal strength and the fibres open 
out when these signs are different (the pattern changes to the opposite pattern if the above-mentioned 
coefficients of the fibres are smaller than the coefficient of the binder). The results obtained for different 
thermal boundary conditions confirm the fact that thermal action has a substantial effect on the RR 
structure and on the stress-strain state of a structure and that this action cannot be neglected. 
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